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ADVANCED TOPICS



smell touch hearing

Other sensory receptors
transmit action potentials
straight to the brain.
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Calupa & Werner The Visual Neurosciences



Why does so much processing occur in the retina?

smell touch hearing vision

Calupa & Werner The Visual Neurosciences
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The retina steps down

quantal rates by 10°

guinea pig
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Borghuis, Sterling & Smith J Neurosci. 2009; 29: 3045-3058



Parallel and serial processing in the retina
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PARALLEL PROCESSING
IN THE RETINA



Parallel processing in the
mammalian retina is established
at the synaptic level
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cells (5) and retinal ganglion cells
(RGCs) (6).

PL N

GCL

Heinz Wissle Nature Reviews Neuroscience 5, 747-757 (2004) NFL




(b) Cone pedicle, the synaptic terminal of cones. Four
presynaptic ribbons are apposed to the dendrites of
horizontal cells (yellow) and ON cone bipolar cells
(blue) in a 'triad'. OFF cone bipolar cell dendrites form
contacts at the cone pedicle base (purple).

(c) Rod spherule, the synaptic terminal of rods. The
presynaptic ribbon is apposed to the invaginating
axons of horizontal cells (yellow) and the dendrites of
rod bipolar cells (blue). OFF cone bipolar cell
dendrites form contacts at the base (purple).

(d) The axon terminal of a cone bipolar cell (blue)
contains up to 50 presynaptic ribbons, and connects
to postsynaptic amacrine cell processes (orange) and
RGC dendrites (purple).

(e) A magnified view of a bipolar cell ribbon synapse
(blue) with an amacrine cell process (orange) and an
RGC dendrite (purple) in a “dyad”.

Heinz Wissle Nature Reviews Neuroscience 5, 747-757 (2004)



Why do we need parallel
pathways from eye to brain?
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Magnocellular

From Rodieck (1998)
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PARVOCELLULAR
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CONE OUTPUTS

Parvocellular




Parvocellular centres

Parvocellular cells in the central retina
have a roughly one-to-one cone
mapping and are thus inherently
colour opponent. The ON and OFF
cells half-wave rectify the cone signals
into four “chromatic” types...

FOUR TYPES

They are “chromatic” simply because
the centre has one cone type and the
surround has a mixture.
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Parvocellular surrounds

Random cone centre-
surround models
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Receptive field of green-off / red-on Type | a
parvocellular neuron at a stimulus-response
interval of 59 ms.

Average stimuli that preceded a response
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Evidence for cone-
specific centre-
surround models...

Reid & Shapley (1992)



Parvocellular

CONE OUTPUTS

-,

©
T loN

The parvocellular pathway
isn’t just about colour...




__ProjectedImage  Sampled Image Austin Roorda, 2004
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RETINAL CONE

6/6 letter R ARRAY

To be able to resolve this E, the image must be sampled at enough points.

The parvocellular pathway, with its midget one-to-one cone to bipolar to
ganglion cell connections, provides enough samples.

The magnocellular pathway, with diffuse bipolar cells, does not.



Colour and luminance Demultiplexing
information are “multiplexed”
in the parvocellular pathway
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Parvocellular

CONE OUTPUTS
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S-CONE (KONIOCELLLAR)
PATHWAY



Cone mosaic

Retina




In other retinal regions, the S-cone mosaic is sparse.

S-cones form between
5 and 10% of the cone
population.

Curcio et al.
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Why have S-cones evolved to be sparse and
restricted to chromatic pathways?



Chromatic aberration

Base picture: Digital camera world



Effect of chromatic
blur on eye chart

Jim Schwiegerling



Primary S-cone pathway
is a separate pathway
through the retina...

L+M OFF bipolar

Small blue-yellow
bistratified ganglion cell
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From Rodieck (1998)
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CONE OUTPUTS
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_ There must also be an OFF S-

cone pathway (because, for
example, CSNB patients are
not tritanopic).

S cone L/M cone L/M cone

Cone
Terminals

Horizontal Cells
Bipolar Cells

Amacrine Cell

Could S-cone signals via
horizontal (HII) cells provide
S-cone colour signals?
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Neitz & Neitz (2107)



Summary
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Separate projections through the LGN
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LGN - receptive field properties of 3 differentchannels
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High temporal frequencies
(motion/flicker)

Low spatial frequencies
Achromatic

Higher contrast sensitivity

Parvocellular pathway:
High spatial frequencies (spatial detail)
Low temporal frequencies
Chromatic
Lower contrast sensitivity




So, why do we have separate
pathways from eye to brain?



ROD PATHWAY



Rod bipolar cells

15-30
rods

Convergence of rods onto rod bipolars

T e /e

1
rod
bipolar

Electron micrograph and
schematic of a rod spherule

BC — Bipolar Cell
HC — Horizontal Cell

Only ON cells




Main rod pathway depends on AlI cells
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All cells generates and ON and OFF copy of the rod signal



Rod pathways to RGCs

AN

Amacrine cells known to receive rod bif:‘olar input

- 3-D reconstruction from serial electron micrographs of a rod bipolar
axon terminal (blue) synapsing upon All amacrine cell {lilac) and A17 ama-
crine cell (yellow) profiles. A17 processes make reciprocal synapses.

All amacrine cells make gap junctions on ON center cone bipolar axons.



AIl amacrine cell
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Rod bipolar cells communicate with ganglion cells indirectly using All amacrine cells. The All
amacrine cells increase the signal under dim lighting conditions by coupling electrically to ON
cone bipolar cells (gap junctions) and signalling chemically to OFF cone bipolar cells.




AII cell function
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Drawing to show the circuitry of the All amacrine cell with pre and post
synaptic neurons. Sublaminas a and b are indicated.
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Fig. Ba. In dark-adapted conditions (A, left) an ON-center response was recorded
al all light intensities tested (threshold = log -6.75). The amplitude of the ON-centar
response increased with increasing Nght inlensity until saturation at ~ log -4.5 o
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Amacrine Cell Function (A17)

A17 cell light responses

0.39 »ﬂw‘h\w

0.5 W
' ]
. Intracellular recordings
of an AI7 amacrine cell. The
1. 8 ¥ N response is a slow depolar-
ization that becomes more

transient with brighfer light
stimuli.

2.35

239huﬁ

light flash

Vaney, 1986

Wide-field diffuse amacrine. Large coverage allows it to collect scotopic rod signals from several
thousand rod bipolar axons. Its high sensitivity to scotopic conditions (rod driven light

intensities) suggests that this amacrine plays a role in converging rod signals from huge areas of
retina and to amplify them at very low light intensities (Webvision).



Dopamine containing (A18) cells

Immunostaining for tyrosine hydroxylase.
A18 Amacrine cells have overlapping
dendrites that form into rings.

Wide-field diffuse amacrine cells that are
dopaminergic. Dopamine affects All coupling.

phs All coupling
; . under dopamine

100 um

. - ".

All coupling normal Vaney, 1994

Fig. 34. Effects of dopamine on All amacrine cell coupling. All cells are normally coupled extensively, but
under the influence of dopamine release, All cells uncoupie.



Summary of main rod-driven pathways




Rod pathways | J ‘ ' " !




All rod pathways

All cells generates and ON and OFF copy of the rod signal
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Convergence of the rod pathway

convergence convergence
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ELECTRORETINOGRAM (ERG)



ERG responses of human, in addition to those Electroretinogram
recorded from other vertebrate species, are

characterized by the basic features of a
negative a-wave followed by a positive b-wave.

Responses to brief flashes in dark adapted
state. Longer stimuli can also evoke a c-wave.

Human

The ERG of a cat in response to a 2 sec
light stimulus. The components, P-I, P-ll
o and P-lIl, have been isolated by deepening
the state of anesthesia (Granit, 1933).

o |

VOLTAGE (mV)

Ragnar Granit, winner of the
Nobel Prize for Physiology
Light and Medicine in 1954

0 1 2
TIME (s)




A schematic representation of the extracellular currents that .
prEsEn A on o7 e ! Recording the ERG
are formed following light stimulation. Pathway A represents

local currents within the retina, while pathway B shows the

the pigment epithelium.

EXTRAOCULAR PATHWAY

currents leaving the retina through the vitreous and the RfEFFEGTWEé”HWAE; \
cornea and returning to the retina through the choroid and 3 \/ 4 D A
&éj:‘ Z,
o 3
/S
A P

>—>ERG

o

/‘__ SENSORY RETINA
xIJ

R-MEMBRANE

An electrical scheme of the resistances through which currents IA and IB flow when
the retina is stimulated with light. The current source |, represents the electrical
current that is generated in the retina in response to a light stimulus. Pathway A is the
local intra-retinal route of current flow and pathway B is the remote route going from
the retina and through the vitreous, lens, cornea, extra-ocular tissues and back to the
retina through the sclera, choroid and pigment epithelium.



Cellular Origins of the ERG

ERG components

e a-wave: photoreceptors

e b-wave: ON bipolars (+Mueller Cells)
e c-wave: pigment epithelium

e d-wave: OFF bipolars

e OP (oscillatory potentials): amacrine cells

S L T L pigment
el = 13 epithelium
= ' c-wave

b-wave s

Control

Miiller cells
a-wave ON tgepl‘?;ﬂr OFF bipolar cells

b-wave d-wave

CSNB1 & amacrine

cells
| OPs
25 uy
I s0msecl

Khan et al., 2004



. . . . Wild type mGlu6 deficient
ERG in mGlu6 deficient mice
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RETINAL DEVELOPMENT



Retinal neurogenesis
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Retinal neurogenesis A

(A) During the development of the vertebrate retina,
there is an initial phase where most of the divisions lead
to progenitor amplification, which then slows down.
When individual cells stop dividing, they differentiate and
this leads to a link between the different cell types and
the growth of the tissue (Livesey & Cepko, 2001).

(B) Throughout retinal development, a reproducible
seqguence of overlapping temporal windows of specific
fate adoption by differentiating cells is established. An B
early differentiating cell can become a retinal ganglion
cell (RGC), a horizontal cell (HC), a rod photoreceptor
(PR) or an amacrine cell (AC), whereas if it differentiates
later, it can become a bipolar cell (BC), a Miiller cell (MC)
or a cone PR; that is, there appears to be an overlap
between these windows of opportunities (adapted from
Cepko et al, 1996).

(C) Recent accurate single-cell tracing assays have
unveiled complex lineage compositions in the zebrafish
retina development.
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Circuit assembly

OPL

IPL

Fig. 2. Schemalic showing the sequence of circuit assembly in the vertebrate retina, illustrated for the mouse.
P = postnatal day. IPL= inner plexiform layer, OPL= outer plexiform layer.

Webvision



Circuit
assembly

OPL

synaptogenesis (3)

conventional synapses IPL

HZ and Am

vesicular transporters (2)

RGC activity (1)

Postnatal day eye-opening

Fig. 18. Summary of key physiological events during circuit assembly and maturation in the mouse retina.
(1) Wong, 1999, Johnson et al., 2003, (2) Johnson et al., 2003; Sherry et al., 2003, (3) Olney, 1968, Blanks
et al., 1974, Fischer, 19739).
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. Evidence came from studies of retinal degenerate (rd) mice,
o Sl - which have a mutation in the B subunit of rod-specific
phosphodiesterase (PDE). This leads to a rapid
degeneration of rods followed by a slower loss of cones.
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TARLE 1

co o AVERAGE TIME OF LATENT PERIOD TIME OF CONTRACTION DIAMETER OF PUPIL
NDI!
INDIVIDUAL EYE AR CO’II::T;)RI*IAC 1 . . ; . 1 . ) ) . — S:gggzgf
Gray 2 28 | Left Normal |1.46-0.616/0.3 (0.3 [0.3 |03 0.3 |3.0[3.0(3.0[3.0]30 231 0.231
Black o 23 | Left Normal {1.54-0.539/0.6 |06 06 [06 06 [30(3.0133|3.3|3.3 2.31 0.099
Black & 23 | Right | Normal |1.54-0.5390.6 0.6 0.6 06 |06 {3.0/33|33]33|33 2.31 0.099
Gray @ 12 | Left Normal |1.54-0.5390.6 [0.6 06 06 06 [3.0/3.0[3.6|4.2 £2 2.31 0.924
Gray ¢ 12 | Right Normal [1.54-0.6160.6 0.6 0.6 0.6 [0.6 |42|4.2|42|56]|586 231 0.924
Gray 9 13 | Left Normal |[1.54-0.6160.6 0.6 0.6 06 06 |[3.6({36!36 36|36 2.31 0.385
Gray Q 13 | Right Normal [1.54-0.616006 [06—0.6 06 0.6 [36|30{30[3.0|3.0 2.31 0.385
Gray @ 10 | Left Normal |[1.54-0.6930.6 (0.6 [0.6 |06 06 [30|3.0{30|3.0]|30 2.31 0.154
Gray Q 10 | Right | Normal {1.54-06160.6 (0.6 0.6 [06 (0.6 [3.0|3.0[30|3.0|3.0 2.81 0154
Chinchilla @ 11 | Left Normal |1 8%-0.616/0.61(0.6. [0.6 [0.6—(0.6 5454154154638 2.16 0.618
Chinchilla ¢ 11 | Right | Normal |1.54-0.616(0.6+|0.64(0.6+/0.6+/0.6+ 4.8 |54|54|54|54 216 0 .616
Averages.. ... ... .. . ......... 1.53-0.602 0.57 3.73 2.28 0.417
Gray Q 31 | Left Rodless (154062124 |24 127 |27 24 [24|24(21 (21|18 2.31 0.154
Gray Q@ 31 | Right | Rodless {1.54-062 3.0 (3.3 2.7 [3.0 |3.0 2415115121118 2.31 0.154
Black & Left Rodless |2.31-1.16 3.3 (3.6 6.0 | 6.6 | Animal choked to death
Chinchilla ¢ Left Rodless {1.39-0.61 1.8 |1.8 (1.8 (2.4 |L.8 30(3.0(30(3.0]|30 2.70 0.385
Chinchilla & Left Rodless [1.30-1.16 1.2 |1.5 (1.8 |1.8 |1.8 |3.0/24 |24 (24|24 2.70 0.308
Brown & 7 | Left Rodless (1.931.16 (1.8 (3.0 |3.0 (30 (1.8 {30(2.0[/30|3.0]20 2.39 0.154
Brown & 7 | Right | Rodless [1.63-1.18 06 (0.6 2.4 [1.8 24 124 |30 |18(30|24 2.39 0.154
Brown Q 34 | Left Rodless [1.54-0.77 1.8 (30 30 (3.0 |30 |24|18|24/30(18 2.39 0.365
Brown Q 34 | Right | Rodless [1.54-0.77 |1.8 (3.0 (3.0 |30 48 |[30|18|18|24]|18 2.31 0.365
Brown @ 6 | Left Rodless [1.54-1.16 [1L.8 (1.2 1.8 (0.6 [0.6 30(18124|124|36 2.39 0.231
Brown 9 6 | Right | Rodless [1.54-1.16 [L.8 |1.5 (1.2 [0.6 0.6 [24|24[24|3.6|3.6 2.39 0.231
1.65-9 .40 12.18 2.56 2 .43 0.230

All diameters are given in millimeters. All times are given in seconds.

Clyde Keeler noted that rodless animals had a slower and weaker PLR than normals. He concluded that the iris
may function independently of vision in rodless animals (based on work in eels from the 1840s) and that the
deficits in rodless animals pointed to a regulatory system for iris constriction in normal eyes.

Keeler, (1927) American J. Physiology 81: 107-112.



A) Mouse with normal retma (+/+) B) Mouse with degenerate retina (rd/rd)
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Locomotor activity records for 29 days. 5 days normal light-dark cycle. After 16 days
in dark a 15-min pulse of light (@) shifted the dark-light cycle by about 90 minutes (2).

Foster et al., (1991) J. Comp Physiol A 169: 39-50.



lgnacio Provencio discovered melanopsin in photosensitive dermal
melanophores, brain and eye of the African clawed frog
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Photoreceptors

Figure 1, Hankins,
Peirson & Foster, 2007
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Calcium imaging (FURA2) in s
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population of pRGCs



Foster lab at Imperial College London generated mice lacking rods and
cones (rd/rd cl mice).

e Following a 15 minute exposure to green light the rd/rd cl
mice still had:

— Circadian phase shifting (Freedman et al., Science (1999) 284 502-504)

— Suppression of pineal melatonin (Lucas et al., Science (1999) 284 505-
507)

e The rd/rd cl mice also retain a pupillary light reflex (PLR)
— Lucas, Douglas and Foster (2001) Nature Neuroscience 4(6) 621-626



The spectral properties of this new photoreceptor were defined using the pupillary light
response in rd/rd cl mice
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Melanopsin-knockout eliminates the intrinsic light response of ipRGCs and reduces

the PLR at high irradiance , By e
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Melanopsin-knockout (mop~-) mice were generated, where the ipRGCs remain but lack melanopsin and do not respond
intrinsically to light (see intrinsic light responses on the left). As shown in A and B, unlike wildtype (mop*/*) and heterozygote
(mop*/~) mice, mop~- mice could not quite achieve a full pupil constriction under bright light (monochromatic 480nm, 145uW
cm?2). The mop~- mice can sustain pupillary constriction for 60 seconds like wildtypes (C) and can sustain the same level of
constriction under low irradiance (0.12uW cm?, green squares) but not high irradiance (110 pW cm?, black circles).

Lucas et al., Science (2003) 299 245-247



Three types of ipRGCs

Three types of ipRGC were originally distinguished on the basis of dendritic stratification
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The three types of ipRGC (M1, M2 and M3) are shown in green (filled with neurobiotin), with a marker for
cholinergic amacrine cells in magenta (to delineate ON and OFF sub-regions of the inner plexiform layer).
The M1 cells (smallest soma diameter) extend dendrites into the OFF subdivision, while M2 cells extend
dendrites into the ON subdivision only. M3 cells extend dendrites into both ON and OFF regions

Schmidt and Kofuji J. Comp Neurol. (2011) 5(19) 1492-1504



Three types of ipRGCS The three different types of ipRGC have distinct
electrophysiological responses to light
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Patch-clamp recordings from ipRGCs in Opn4-EGFP mice (in the presence of synaptic
blockade), reveal a stronger depolarisation to bright white light in M1-type cells. This is because
M1 ipRGCs contain the highest levels of melanopsin (Opn4, stained red).

Schmidt and KofujiJ. Comp Neurol. (2011) 5(19) 1492-1504
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The ipRGCs project to the suprachiasmatic nucleus (SCN), the subparaventricular zone (SPZ), the
ventrolateral preoptic area (VLPO), and the intergeniculate leaflet (IGL) of the lateral geniculate
nucleus (LGN), which are involved in circadian regulation, and to the olivary pretectal nucleus (OPN),
which is a relay of the pupillary light reflex. Projections to the dorsal LGN provide an interface with the

imaging-forming system. Benarroch, 2011



Summary of different ipRGC
subtypes and their sub-
cortical projections.

Schmidt et al., TINS (2011) 34(11) 572-80)
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Rods and cones hyperpolarize in
response to light, but melanopsin-
containing ipRGCs depolarize
upon light stimulation.
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Natural daylight and circadian rhythms




The ipRGCs receive inputs from all other photoreceptor types:
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(B) Retinal irradiance
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From Lucas et al. (2014). Measuring and using light in the melanopsin age. Trends Neurosci, 37(1),

1-9.



Should consider all photoreceptors...
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Summary

The melanopsin system mediates several non-image-forming visual

functions, including light entrainment of circadian rhythms and pupillary
responses to light.

The ipRGCs constitute a small percentage of ganglion cells; in each human

eye, up to 3,000 out of ~1.5 million retinal ganglion cells stain positively for
melanopsin.
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